Publications
At UCLA
(40) Lipid- and protein-directed photosensitizer proximity labeling captures the cholesterol interactome
Andrew p Becker, Elijah Biletch, John Paul Kennelly, Ashley R Julio, Miranda Villanueva, Rohith Nagari, Daniel W. Turner, Nikolas R. Burton, Tomoyuki Fukuta, Liujuan Cui, Xu Xiao, Soon-Gook Hong, Julia J Mack, Peter Tontonoz, Keriann Backus
bioRxiv 2024.08.20.608660. This content is a preprint and has not been peer-reviewed. (link)
(39) CySP3-96 enables scalable, streamlined, and low-cost sample preparation for cysteine chemoproteomic applications
Shikwana F, Desai HS, Heydari B, Ofori S, Truong C, Turmon A, Darrouj J, Holoidovsky L, Gustafson J, Backus K. ChemRxiv. doi:10.26434/chemrxiv-2024-jm4n0. This content is a preprint and has not been peer-reviewed. (link)
(38) Generating cysteine-trypsin cleavage sites with 2-chloroacetamidine capping
Ofori S, Desai HS, Shikwana F, Boatner LM, Dominguez ER III, Castellon JO, et al. Generating cysteine-trypsin cleavage sites with 2-chloroacetamidine capping. Chem. Comm. 2024, 60, 8856-8859. (link) Part of the 2024 Emerging Investigators issue.
(37) Silyl Ether Enables High Coverage Chemoproteomic Interaction Site Mapping
Takechi S, Ngo C, Burton N, Villanueva M, Boatner L, Yu F, et al. Silyl Ether Enables High Coverage Chemoproteomic Interaction Site Mapping. ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-21r7b. This content is a preprint and has not been peer-reviewed. (link)
Takechi S, Ngo C, Burton N, Villanueva M, Boatner L, Yu F, et al. Silyl Ether Enables High Coverage Chemoproteomic Interaction Site Mapping. ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-21r7b. This content is a preprint and has not been peer-reviewed. (link)
(36) Chemoproteomics Identifies State-Dependent and Proteoform-Selective Caspase-2 Inhibitors
Castellón JO, Ofori S, Burton NR, Julio AR, Turmon AC, Armenta E, Sandoval C, Boatner LM, Takayoshi EE, Faragalla M, Taylor C, Zhou AL, Tran K, Shek J, Yan T, Desai HS, Fregoso OI, Damoiseaux R, Backus KM. Chemoproteomics Identifies State-Dependent and Proteoform-Selective Caspase-2 Inhibitors. J Am Chem Soc. 2024 Jun 5;146(22):14972-14988. doi: 10.1021/jacs.3c12240. Epub 2024 May 24. PMID: 38787738. (link)
Castellón JO, Ofori S, Burton NR, Julio AR, Turmon AC, Armenta E, Sandoval C, Boatner LM, Takayoshi EE, Faragalla M, Taylor C, Zhou AL, Tran K, Shek J, Yan T, Desai HS, Fregoso OI, Damoiseaux R, Backus KM. Chemoproteomics Identifies State-Dependent and Proteoform-Selective Caspase-2 Inhibitors. J Am Chem Soc. 2024 Jun 5;146(22):14972-14988. doi: 10.1021/jacs.3c12240. Epub 2024 May 24. PMID: 38787738. (link)
(35) Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics
Burton NR, Backus KM. Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics. Commun Chem. 2024 Apr 10;7(1):80. doi: 10.1038/s42004-024-01162-x. PMID: 38600184; PMCID: PMC11006884. (link)
Burton NR, Backus KM. Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics. Commun Chem. 2024 Apr 10;7(1):80. doi: 10.1038/s42004-024-01162-x. PMID: 38600184; PMCID: PMC11006884. (link)
(34) Protocol for organelle-specific cysteine capture and quantification of cysteine oxidation state
Julio AR, Yan T, Backus KM. Protocol for organelle-specific cysteine capture and quantification of cysteine oxidation state. STAR Protoc. 2024 Mar 15;5(1):102865. doi: 10.1016/j.xpro.2024.102865. Epub 2024 Feb 6. PMID: 38329879; PMCID: PMC10862403. (link)
Julio AR, Yan T, Backus KM. Protocol for organelle-specific cysteine capture and quantification of cysteine oxidation state. STAR Protoc. 2024 Mar 15;5(1):102865. doi: 10.1016/j.xpro.2024.102865. Epub 2024 Feb 6. PMID: 38329879; PMCID: PMC10862403. (link)
(33) Defining the Cell Surface Cysteinome using Two-step Enrichment Proteomics
Yan T, Boatner LM, Cui L, Tontonoz PJ, Backus KM. Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics. JACS Au. 2023 Dec 13;3(12):3506-3523. doi: 10.1021/jacsau.3c00707. PMID: 38155636; PMCID: PMC10751780. (link)
Yan T, Boatner LM, Cui L, Tontonoz PJ, Backus KM. Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics. JACS Au. 2023 Dec 13;3(12):3506-3523. doi: 10.1021/jacsau.3c00707. PMID: 38155636; PMCID: PMC10751780. (link)
(32) Pervasive aggregation and depletion of host and viral proteins in response to cysteine-reactive electrophilic compounds
Julio AR, Shikwana F, Truong C, Burton NR, Dominguez E, Turmon AC, Cao J, Backus KM. Pervasive aggregation and depletion of host and viral proteins in response to cysteine-reactive electrophilic compounds. bioRxiv [Preprint]. 2023 Nov 16:2023.10.30.564067. doi: 10.1101/2023.10.30.564067. PMID: 38014036; PMCID: PMC10680658. (link)
Julio AR, Shikwana F, Truong C, Burton NR, Dominguez E, Turmon AC, Cao J, Backus KM. Pervasive aggregation and depletion of host and viral proteins in response to cysteine-reactive electrophilic compounds. bioRxiv [Preprint]. 2023 Nov 16:2023.10.30.564067. doi: 10.1101/2023.10.30.564067. PMID: 38014036; PMCID: PMC10680658. (link)
(31) A solid-phase compatible silane-based cleavable linker enables custom isobaric quantitative chemoproteomics
Burton NR, Polasky DA, Shikwana F, Ofori S, Yan T, Geiszler DJ, Veiga Leprevost FD, Nesvizhskii AI, Backus KM. Solid-Phase Compatible Silane-Based Cleavable Linker Enables Custom Isobaric Quantitative Chemoproteomics. J Am Chem Soc. 2023 Sep 22. doi: 10.1021/jacs.3c05797. Epub ahead of print. PMID: 37738129. (link)
Burton NR, Polasky DA, Shikwana F, Ofori S, Yan T, Geiszler DJ, Veiga Leprevost FD, Nesvizhskii AI, Backus KM. Solid-Phase Compatible Silane-Based Cleavable Linker Enables Custom Isobaric Quantitative Chemoproteomics. J Am Chem Soc. 2023 Sep 22. doi: 10.1021/jacs.3c05797. Epub ahead of print. PMID: 37738129. (link)
(30) Multi-omic stratification of the missense variant cysteinome
Desai HS, Ofori S, Boatner LM, Yu F, Villanueva M, Ung N, Nesvizhskii AI, Backus KM. bioRxiv 2023.08.12.553095; doi: https://doi.org/10.1101/2023.08.12.553095. (link)
Desai HS, Ofori S, Boatner LM, Yu F, Villanueva M, Ung N, Nesvizhskii AI, Backus KM. bioRxiv 2023.08.12.553095; doi: https://doi.org/10.1101/2023.08.12.553095. (link)
(29) Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome
Yan T, Julio AR, Villanueva M, Jones AE, Ball AB, Boatner LM, Turmon AC, Nguyễn KB, Yen SL, Desai HS, Divakaruni AS, Backus KM. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome. Cell Chem Biol. 2023 Jul 20;30(7):811-827.e7. doi: 10.1016/j.chembiol.2023.06.008. Epub 2023 Jul 6. PMID: 37419112; PMCID: PMC10510412. (link)
Yan T, Julio AR, Villanueva M, Jones AE, Ball AB, Boatner LM, Turmon AC, Nguyễn KB, Yen SL, Desai HS, Divakaruni AS, Backus KM. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome. Cell Chem Biol. 2023 Jul 20;30(7):811-827.e7. doi: 10.1016/j.chembiol.2023.06.008. Epub 2023 Jul 6. PMID: 37419112; PMCID: PMC10510412. (link)
(28) CysDB: A Human Cysteine Database based on Experimental Quantitative Chemoproteomics
Boatner LM, Palafox MF, Schweppe DK, Backus KM. CysDB: a human cysteine database based on experimental quantitative chemoproteomics. Cell Chem Biol. 2023 Jun 15;30(6):683-698.e3. doi: 10.1016/j.chembiol.2023.04.004. Epub 2023 Apr 28. PMID: 37119813; PMCID: PMC10510411. (link)
Boatner LM, Palafox MF, Schweppe DK, Backus KM. CysDB: a human cysteine database based on experimental quantitative chemoproteomics. Cell Chem Biol. 2023 Jun 15;30(6):683-698.e3. doi: 10.1016/j.chembiol.2023.04.004. Epub 2023 Apr 28. PMID: 37119813; PMCID: PMC10510411. (link)
(27) Distributable, Metabolic PET Reporting of Tuberculosis
Khan RMN, Ahn YM, Marriner GA, Via LE, D'Hooge F, Lee SS, Yang N, Basuli F, White AG, Tomko JA, Frye LJ, Scanga CA, Weiner DM, Sutphen ML, Schimel DM, Dayao E, Piazza MK, Gomez F, Dieckmann W, Herscovitch P, Mason NS, Swenson R, Kiesewetter DO, Backus KM, Geng Y, Raj R, Anthony DC, Flynn JL, Barry CE, Davis BG. Preprint. bioRxiv. 2023;2023.04.03.535218. (2023). doi:10.1101/2023.04.03.535218. (link)
Khan RMN, Ahn YM, Marriner GA, Via LE, D'Hooge F, Lee SS, Yang N, Basuli F, White AG, Tomko JA, Frye LJ, Scanga CA, Weiner DM, Sutphen ML, Schimel DM, Dayao E, Piazza MK, Gomez F, Dieckmann W, Herscovitch P, Mason NS, Swenson R, Kiesewetter DO, Backus KM, Geng Y, Raj R, Anthony DC, Flynn JL, Barry CE, Davis BG. Preprint. bioRxiv. 2023;2023.04.03.535218. (2023). doi:10.1101/2023.04.03.535218. (link)
(26) Introduction to the themed collection on Covalent Drug Discovery
Backus KM, Pan Z, Jones LH. RSC Med Chem. 2022 Jul 14;13(8):893-894. doi: 10.1039/d2md90022j. PMID: 36092145; PMCID: PMC9384831. (link)
Backus KM, Pan Z, Jones LH. RSC Med Chem. 2022 Jul 14;13(8):893-894. doi: 10.1039/d2md90022j. PMID: 36092145; PMCID: PMC9384831. (link)
(25) SP3-FAIMS-Enabled High-Throughput Quantitative Profiling of the Cysteinome
Desai HS, Yan T, Backus KM. Curr Protoc. 2022 Jul;2(7):e492. doi: 10.1002/cpz1.492. PMID: 35895291. (link)
Desai HS, Yan T, Backus KM. Curr Protoc. 2022 Jul;2(7):e492. doi: 10.1002/cpz1.492. PMID: 35895291. (link)
(24) SP3-Enabled Rapid and High Coverage Chemoproteomic Identification of Cell-State-Dependent Redox-Sensitive Cysteines.
Desai HS, Yan T, Yu F, Sun AW, Villanueva M, Nesvizhskii AI, Backus KM. Mol Cell Proteomics. 2022 Apr;21(4):100218. doi: 10.1016/j.mcpro.2022.100218. Epub 2022 Feb 25. PMID: 35219905; PMCID: PMC9010637. (link)
(23) Tunable heteroaromatic azoline thioethers (HATs) for cysteine profiling
Tang KC, Maddox SM, Backus KM, Raj M. (2022) Chem. Sci., 13, 763-774. doi:10.1039/D1SC04139H. (link)
(22) Tunable Amine-Reactive Electrophiles for Selective Profiling of Lysine
Tang KC, Cao J, Boatner LM, Li L, Farhi J, Houk KN, Spangle J, Backus KM, Raj M. (2021) Angew Chem Int Ed Engl. 61(5):e202112107. doi: 10.1002/anie.202112107. PMID: 34762358. (link)
Tang KC, Cao J, Boatner LM, Li L, Farhi J, Houk KN, Spangle J, Backus KM, Raj M. (2021) Angew Chem Int Ed Engl. 61(5):e202112107. doi: 10.1002/anie.202112107. PMID: 34762358. (link)
(21) Enhancing Cysteine Chemoproteomic Coverage Through Systematic Assessment of Click Chemistry Product Fragmentation
Yan, T., Palmer, A., Geiszler, D., Polansky, D., Armenta, E., Nesvizhskii, A., Backus, K. (2021) ChemRxiv. doi:10.33774/chemrxiv-2021-4b291. (link)
(20) Photoaffinity labelling strategies for mapping the small molecule-protein interactome
Burton NR, Kim P, Backus KM. (2021) Org Biomol Chem. Sep 22;19(36):7792-780923 doi:10.1039/d1ob01353j. (link)
(19) New Approaches to Target RNA Binding Proteins
Julio, AR, Backus KM. (2021) Current Opinion in Chemical Biology. Volume 62, June 2021, Pages 13-23 doi:10.1016/j.cbpa.2020.12.006. (link)
(18) SP3-FAIMS Chemoproteomics for High Coverage Profiling of the Human Cysteinome
Yan T, Desai HS, Boatner LM, Yen SL, Cao J, Palafox MF, Jami-Alahmadi Y, Backus K. (2021) ChemBioChem. doi:10.1101/2020.07.03.186007; ChemRxiv doi:10.26434/chemrxiv.13487364.v1. (link)
(17) From Chemoproteomic-Detected Amino Acids to Genomic Coordinates: Insights into Precise Multi-omic Data Integration
Palafox MF, Desai HS, Arboleda VA#, Backus KM# (2021) Molecular Systems Biology. 17:e9840. doi:10.15252/msb.20209840; first on bioRxiv. doi:10.1101/2020.07.03.186007; #co-corresponding author (link)
(16) Suzuki–Miyaura cross-coupling for chemoproteomic applications
Cao J, Armenta A, Boatner LM, Desai HS, Chan NJ, Castellón JO, Backus KM (2021) Analytical Chemistry doi:10.1021/acs.analchem.0c04726; ChemRxiv. doi:10.26434/chemrxiv.12055218.v1. (link)
(15) Integrative x-ray structure and molecular modeling for the rationalization of procaspase-8 inhibitor potency and selectivity
Xu JH, Eberhardt, J, Hill-Payne B, Eberhardt J, González-Páez GE, Castellón JO, Cravatt, BF, Forli S#, Wolan DW#, Backus KM#. (2020) ACS Chem Biol. doi: 10.1021/acschembio.0c00019. bioRxiv 721951 doi: 10.1101/721951; #co-corresponding author.(link)
Xu JH, Eberhardt, J, Hill-Payne B, Eberhardt J, González-Páez GE, Castellón JO, Cravatt, BF, Forli S#, Wolan DW#, Backus KM#. (2020) ACS Chem Biol. doi: 10.1021/acschembio.0c00019. bioRxiv 721951 doi: 10.1101/721951; #co-corresponding author.(link)
(14) Opportunities and challenges for the development of covalent chemical immunomodulators
Backus KM, Jian Cao, Sean Maddox, Bioorganic and Medicinal Chemistry. (2019) pii: S0968-0896(19)30222-6 (link)
(13) Applications of Reactive Cysteine Profiling
Backus KM, (2018) In: . Current Topics in Microbiology and Immunology. Springer, Berlin, Heidelberg (link)
Before UCLA
(12) Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer
Bar-Peled L., Kemper EK, Suciu RM, Vinogradova EV, Backus KM, Horning BD, Paul TA, Ichu TA, Svensson RU, Olucha J, Chang MW, Kok BP, Zhu Z, Ihle NT, Dix MM, Jiang P, Hayward MM, Saez E, Shaw RJ, Cravatt BF, Cell. 171(3):696-709 (2017) doi: 10.1016/j.cell.2017.08.051 (link)
(11) Proteome-wide assessment of lysine reactivity and ligandability
Hacker, SM*#, Backus, KM*#, Lazear, MR, Forli, S, Correia, B, Cravatt, BF#, Nature Chemistry (2017) *co-first authorship; #co-corresponding author (link)
Hacker, SM*#, Backus, KM*#, Lazear, MR, Forli, S, Correia, B, Cravatt, BF#, Nature Chemistry (2017) *co-first authorship; #co-corresponding author (link)
(10) Discovery of Reactive Microbiota-Derived Metabolites that Inhibit Host Proteases
Guo, CJ, Chang, F-Y, Wyche, TP, Backus, KM, Acker, TM, Funabashi, M, Taketani, M, Donia, MS, Nayfach, S, Pollard, KS., Cravatt, BF, Craik, CS, Clardy, J, Voigt, CA, Fischbach, MA, Cell 168(3): 517-526 (2017) doi: 10.1016/j.cell.2016.12.021(link)
Guo, CJ, Chang, F-Y, Wyche, TP, Backus, KM, Acker, TM, Funabashi, M, Taketani, M, Donia, MS, Nayfach, S, Pollard, KS., Cravatt, BF, Craik, CS, Clardy, J, Voigt, CA, Fischbach, MA, Cell 168(3): 517-526 (2017) doi: 10.1016/j.cell.2016.12.021(link)
(9) A Screen for Protein-Protein Interactions in Live Mycobacteria Reveals a Functional Link between the Virulence-Associated Lipid Transporter LprG and the Mycolyltransferase Antigen 85A
Touchette, MH, Bai, L, Van Vlack, ER, Cognetta, AB, Previti, ML, Backus, KM, Martin, DW, Cravatt, BF, Seeliger, JC ACS. Infec. Dis. 3(5):336-348 (2017) doi: 10.1021/acsinfecdis.6b00179 (link)
Touchette, MH, Bai, L, Van Vlack, ER, Cognetta, AB, Previti, ML, Backus, KM, Martin, DW, Cravatt, BF, Seeliger, JC ACS. Infec. Dis. 3(5):336-348 (2017) doi: 10.1021/acsinfecdis.6b00179 (link)
(8) Covalent Modifiers of the Vacuolar ATPase
Chen YC, Backus KM, Merkulova M, Yang C, Brown D, Cravatt BF, Zhang C., J. Am. Chem. Soc. 139(2):639–642 (2017) doi: 10.1021/jacs.6b12511 (link)
Chen YC, Backus KM, Merkulova M, Yang C, Brown D, Cravatt BF, Zhang C., J. Am. Chem. Soc. 139(2):639–642 (2017) doi: 10.1021/jacs.6b12511 (link)
(7) Chemical proteomic profiling of human methyltransferases
Horning, B, Suciu, M, Ghadiri, D, Ulanovskaya, O, Lum, K, Backus, K, Brown, S, Rosen, H, Cravatt, B, J. Am. Chem. Soc. 138(40):13335-13343 (2016) DOI: 10.1021/jacs.6b07830 (link)
Horning, B, Suciu, M, Ghadiri, D, Ulanovskaya, O, Lum, K, Backus, K, Brown, S, Rosen, H, Cravatt, B, J. Am. Chem. Soc. 138(40):13335-13343 (2016) DOI: 10.1021/jacs.6b07830 (link)
(6) Chemical proteomic map of dimethylfumarate-sensitive cysteines in primary human T cells
Blewett, M, Xie, J, Zaro, B, Backus, KM, Altman, A, Teijaro, J, Cravatt, BF Science Signaling, 9(445):rs10 (2016) doi: 10.1126/scisignal.aaf7694 (link)
Blewett, M, Xie, J, Zaro, B, Backus, KM, Altman, A, Teijaro, J, Cravatt, BF Science Signaling, 9(445):rs10 (2016) doi: 10.1126/scisignal.aaf7694 (link)
(5) Paracrine Induction of HIF by Glutamate in Breast Cancer: EglN1 Senses Cysteine
Briggs, KJ, Koivunen, P, Cao, S, Backus, KM, Olenchock, BA, Patel H, Zhang, Q, Signoretti, S., Gerfen, GJ, Richardson, AL, Witkiewicz, AK, Cravatt, BF, Clardy, J, Kaelin, Jr, WG Cell 166(1):126-39 (2016) doi: 10.1016/j.cell.2016.05.042 (link)
Briggs, KJ, Koivunen, P, Cao, S, Backus, KM, Olenchock, BA, Patel H, Zhang, Q, Signoretti, S., Gerfen, GJ, Richardson, AL, Witkiewicz, AK, Cravatt, BF, Clardy, J, Kaelin, Jr, WG Cell 166(1):126-39 (2016) doi: 10.1016/j.cell.2016.05.042 (link)
(4) Proteome-wide covalent ligand discovery in native biological systems
Backus, KM*#, Correia, B*, Lum, K., Forli, S, Horning, B, González-Páez, GE, Chatterjee, S, Lanning, BR, Teijaro, JR, Olson, AJ, Wolan, DW, Cravatt, BF, Nature 534(7608):570-4 (2016) *co-first authorship; #co-corresponding author doi: 10.1038/nature18002 (link)
Backus, KM*#, Correia, B*, Lum, K., Forli, S, Horning, B, González-Páez, GE, Chatterjee, S, Lanning, BR, Teijaro, JR, Olson, AJ, Wolan, DW, Cravatt, BF, Nature 534(7608):570-4 (2016) *co-first authorship; #co-corresponding author doi: 10.1038/nature18002 (link)
(3) The Three Mycobacterium tuberculosis Antigen 85 Isoforms have Unique Substrates and Activities Determined by Non-active Site Regions
Backus, KM, Dolan, M, Barry, Barry, CS, Joe, M, McPhie, P, Boshoff, HM, Lowary, TL, Davis, BG#, Barry, CE III#, J. Biol. Chem. 289(36):25041-53 (2014) #co-corresponding author doi: 10.1074/jbc.M114.581579 (link)
Backus, KM, Dolan, M, Barry, Barry, CS, Joe, M, McPhie, P, Boshoff, HM, Lowary, TL, Davis, BG#, Barry, CE III#, J. Biol. Chem. 289(36):25041-53 (2014) #co-corresponding author doi: 10.1074/jbc.M114.581579 (link)
(2) ESI-MS Assay of M. tuberculosis Cell Wall Antigen 85 Enzymes Permits Substrate Profiling and Design of a Mechanism-Based Inhibitor
Barry, CS, Backus, KM, Barry, CS III, Davis, BG, J. Am. Chem. Soc. 133(34):13232-5 (2011) doi: 10.1021/ja204249p (link)
Barry, CS, Backus, KM, Barry, CS III, Davis, BG, J. Am. Chem. Soc. 133(34):13232-5 (2011) doi: 10.1021/ja204249p (link)
(1) Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis
Backus, K.M., Boshoff, H., Barry, C.T., Boutureira, O., Patel, M., D’Hooge, F., Lee, S., Kapil, T., Via, LE, Barry, CE III#, Davis, BG#, Nat. Chem. Biol. 7(4): 228-235 (2011) #co-corresponding author doi: 10.1038/nchembio.539 (link)
Backus, K.M., Boshoff, H., Barry, C.T., Boutureira, O., Patel, M., D’Hooge, F., Lee, S., Kapil, T., Via, LE, Barry, CE III#, Davis, BG#, Nat. Chem. Biol. 7(4): 228-235 (2011) #co-corresponding author doi: 10.1038/nchembio.539 (link)
Book Chapters
Mycolic Acid/Cyclopropane Fatty Acid/Fatty Acid Biosynthesis and Health Relations
Kastrinsky, D.B., McBride, N.S., Backus, K.M., Leblanc, J.J., Barry, C.E.III In:Comprehensive Natural Products Chemistry II, Mander L, Liu H-w, editors. Vol. 1. Elsevier; Oxford. pp. 65–146 (2010) (link)
Kastrinsky, D.B., McBride, N.S., Backus, K.M., Leblanc, J.J., Barry, C.E.III In:Comprehensive Natural Products Chemistry II, Mander L, Liu H-w, editors. Vol. 1. Elsevier; Oxford. pp. 65–146 (2010) (link)
Patents
Cysteine Reactive Probes and Uses Thereof
Backus K.M., Correia, B., Blewett, M.M., Cravatt, B.F., U.S. Patent US2017070611A1 Filed Oct. 21, 2016 and published Apr. 27, 2017
Backus K.M., Correia, B., Blewett, M.M., Cravatt, B.F., U.S. Patent US2017070611A1 Filed Oct. 21, 2016 and published Apr. 27, 2017
Cysteine-Reactive Ligand Discovery in Proteomes
Wang, C., Backus K.M., Cravatt, B.F. U.S. Patent EP3033625A1 Filed Aug. 13, 2013 and published Oct. 18, 2015
Wang, C., Backus K.M., Cravatt, B.F. U.S. Patent EP3033625A1 Filed Aug. 13, 2013 and published Oct. 18, 2015
Detection of Mycobacteria
Backus, K. M., Boshoff, H., Davis, B.G., Barry, C.E. U.S. Patent 20120263649A1 Filed Sept. 11, 2009 and published Oct. 18, 2012
Backus, K. M., Boshoff, H., Davis, B.G., Barry, C.E. U.S. Patent 20120263649A1 Filed Sept. 11, 2009 and published Oct. 18, 2012